Nonhomogeneous ventricular wall strain: analysis of errors and accuracy.

نویسندگان

  • L K Waldman
  • A D McCulloch
چکیده

Nonhomogeneous distributions of strains are simulated and utilized to determine two potential errors in the measurement of cardiac strains. First, the error associated with the use of single-plane imaging of myocardial markers is examined. We found that this error ranges from small to large values depending on the assumed variation in stretch. If variations in stretch are not accompanied by substantial regional changes in ventricular radius, the associated error tends to be quite small. However, if the nonuniform stretch field is a result of substantial variations in local curvature from their reference values, large errors in stretch and strain occur. For canine hearts with circumferential radii of 2 to 4 cm, these errors in stretch may be as great as 30 percent or more. Moreover, gradients in stretch may be over- or underestimated by as much as 100 percent. In the second part of this analysis, the influence of random measurement errors in the coordinate positions of markers on strains computed from them is studied. Arrays of markers covering about 16 cm2 of ventricular epicardium are assumed and nonuniform stretches imposed. The reference and deformed positions of the markers are perturbed with Gaussian noise with a standard deviation of 0.1 mm, and then strains are computed using either homogeneous strain theory or a nonhomogeneous finite element method. For the strain distributions prescribed, it is found that the finite element method reduces the error resulting from noise by about 50 percent over most of the region. Accurate measurements of cardiac strain distributions are needed for correlation with and validation of realistic three-dimensional stress analyses of the heart.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The law of Laplace. Its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle.

I made a detailed comparative examination of five mathematical models of left ventricular (LV) mechanics: the Laplace model, Lame model, Valanis-Landel model, Rivlin-Saunders model, and a nonhomogeneous version of the Valanis-Landel model. All five models are used to predict LV pressurevolume (P-V) and pressure-wall stress (P-S) behavior using the same geometric and stress-strain data (rat data...

متن کامل

عملکرد سیستولی قلب در بیماران سیروزی کاندید پیوند کبد در مقایسه با گروه کنترل

Background: We assessed different systolic cardiac indices to describe left and right ventricular dysfunction in cirrhotic patients before liver transplantation. Methods: In this case-control study, eighty-one consecutive individuals with the confirmed hepatic cirrhosis and candidate for liver transplantation in the Imam Khomeini Hospital between March 2008 and March 2010 were selected. T...

متن کامل

Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog.

To study the nonuniform mechanical function that occurs in normal and ischemic ventricular myocardium, a new method has been developed and validated. An array of 25 lead markers (approximately 4 x 4 cm) was sewn onto the epicardium of the anterior free wall of the left ventricle in an open-chest, anesthetized canine preparation. Biplane cineradiography was used to track marker positions through...

متن کامل

Numerical Simulation of Forced Convection of Nanofluids by a Two-Component Nonhomogeneous Model

Nanofluids, in which nano-sized particles (typically less than 100 nm) are suspended in liquids, have emerged as a possible effective way of improving the heat transfer performance of common fluids. In this paper a numerical study is performed to analyze the wall shear stress and heat transfer coefficient of γAl2O3-water nanofluids under laminar forced convection through a circular pipe. It is ...

متن کامل

Tissue Doppler, strain, and strain rate echocardiography for the assessment of left and right systolic ventricular function.

Tissue Doppler (TDE), strain, and strain rate echocardiography are emerging real time ultrasound techniques that provide a measure of wall motion. They offer an objective means to quantify global and regional left and right ventricular function and to improve the accuracy and reproducibility of conventional echocardiography studies. Radial and longitudinal ventricular function can be assessed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 115 4B  شماره 

صفحات  -

تاریخ انتشار 1993